Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions
نویسندگان
چکیده
Although biophysical details of inhibitory neurons are becoming known, it is challenging to map these details onto function. Oriens-lacunosum/moleculare (O-LM) cells are inhibitory cells in the hippocampus that gate information flow, firing while phase-locked to theta rhythms. We build on our existing computational model database of O-LM cells to link model with function. We place our models in high-conductance states and modulate inhibitory inputs at a wide range of frequencies. We find preferred spiking recruitment of models at high (4-9 Hz) or low (2-5 Hz) theta depending on, respectively, the presence or absence of h-channels on their dendrites. This also depends on slow delayed-rectifier potassium channels, and preferred theta ranges shift when h-channels are potentiated by cyclic AMP. Our results suggest that O-LM cells can be differentially recruited by frequency-modulated inputs depending on specific channel types and distributions. This work exposes a strategy for understanding how biophysical characteristics contribute to function.
منابع مشابه
Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics.
During a wide variety of behaviors, hippocampal field potentials show significant power in the theta (4-12 Hz) frequency range and individual neurons commonly phase-lock with the 4-12 Hz field potential. The underlying cellular and network mechanisms that generate the theta rhythm, however, are poorly understood. Oriens-lacunosum moleculare (O-LM) interneurons have been implicated as crucial co...
متن کاملSlow and fast inhibition and an h-current interact to create a theta rhythm in a model
The Oriens-lacunosum moleculare (O-LM) subtype of interneuron is a key component in the formation of the theta rhythm (8 12 Hz) in the hippocampus. It is known that the CA1 region of the hippocampus can produce theta rhythms in vitro with all ionotropic excitation blocked, but the mechanisms by which this rhythmicity happens were previously unknown. Here we present a model suggesting that indiv...
متن کاملSlow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network.
The oriens-lacunosum moleculare (O-LM) subtype of interneuron is a key component in the formation of the theta rhythm (8-12 Hz) in the hippocampus. It is known that the CA1 region of the hippocampus can produce theta rhythms in vitro with all ionotropic excitation blocked, but the mechanisms by which this rhythmicity happens were previously unknown. Here we present a model suggesting that indiv...
متن کاملSynaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency.
GABAergic interneurons of the hippocampus play an important role in the generation of behaviorally relevant network oscillations. Among this heterogeneous neuronal population, somatostatin (SOM)-positive oriens-lacunosum moleculare (O-LM) interneurons are remarkable because they are tuned to operate at theta frequencies (6-10 Hz) in vitro and in vivo. Recent studies show that a high proportion ...
متن کاملTime-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کامل